
Efficient Pattern-Based Time Series Classification on GPU

Kai-Wei Chang1, Biplab Deka2, Wen-Mei W. Hwu2, Dan Roth1

1Dept. of Computer Science, 2Dept. of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign, IL USA
{kchang10, deka2, w-hwu, danr}@illinois.edu

Abstract—Time series shapelet discovery algorithm finds
subsequences from a set of time series for use as primitives
for time series classification. This algorithm has drawn a lot of
interest because of the interpretability of its results. However,
computation requirements restrict the algorithm from dealing
with large data sets and may limit its application in many
domains. In this paper, we address this issue by redesigning
the algorithm for implementation on highly parallel Graphics
Process Units (GPUs). We investigate several concepts of GPU
programming and propose a dynamic programming algorithm
that is suitable for implementation on GPUs. Results show that
the proposed GPU implementation significantly reduces the
running time of the shapelet discovery algorithm. For example,
on the largest sample dataset from the original authors, the
running time is reduced from half a day to two minutes.

Keywords-Time Series, GPU, Classification, Pattern-based
Classification

I. INTRODUCTION

Time series classification has several important real world
applications [1] from intrusion detection to genomic re-
search. Ye and Keogh [2] illustrate several examples in-
cluding an example for classifying leaves of Urtica dioica
and Verbena urticifolia (see Figure 1 in [2]). The approach
described in [2] entails converting the problem into a
time series classification problem and then using a new
pattern-based methodology for classification. The pattern-
based method, called shapelet discovery, aims at finding
the subsections (called pivot) of the time series that are
predictive of a class and useful for classification. It builds a
decision tree-like classifier based on the shapelets and makes
decisions by examining if the distance between the pivot and
any subsequence of the objects is less than a threshold.

Although the pattern-based method is shown to provide
accurate, interpretable classification results for problems
from a variety of domains, it requires a significant computa-
tional effort. In the training stage of the algorithm, the time
complexity of a naive implementation to discover the pivots
(the shapelet discovery algorithm) is O(N2L4), where N is
the number of time series and L is the length of the time
series. A recent paper [3] proposed reuse of computations
and reduces the time complexity to O(N2L3). However, it
is still expensive for several data sets of interest. Results
presented in [3] suggest that for several problems of interest,
the running time could be as high as 104 to 105 seconds.

In this work, we mitigate this limitation of the shapelet
discovery algorithm by modifying the algorithm for execu-
tion on Graphics Processing Units (GPUs) and show that it is
possible to achieve orders of magnitude of speedup with this
approach. GPUs currently have good support for general pur-
pose computation and come bundled with standard desktops
making it an attractive option for speeding up applications.
Recently, GPUs have been widely applied in several fields
ranging from signal processing to computational finance [4].
GPUs have also been successfully applied in speeding up
several data mining and machine learning models such as
SVM [5], [6], unsupervised deep learning [7], and LDA [8].
However, it should be noted that achieving good speedups
from a GPU implementation requires a good understanding
of GPU architecture and programming model. We present
a detailed discussion of these factors and show how our
implementation exploits them for better performance.

Sart et al. [9] present an earlier attempt to accelerate
time series classification by using GPUs for dynamic time
warping (DTW) subsequence search. Their problem setting
is different from ours as their goal is to find the best time
series that matches a given query or a pivot. However, in
the shapelet discovery problem that we consider, our aim is
to find the most representative pivot.

The contributions of this work are:

• We develop a dynamic programming algorithm for
finding shapelets on GPU. The proposed algorithm
is simple and has potential to be extended for other
pattern-based learning algorithms and applications.

• We show that the shapelet discovery algorithm can
derive significant performance gains from a GPU based
implementation. This makes the algorithm a viable
option for larger datasets and allows it to perform more
extensive search for a better shapelet.

• We also present different optimizations of the GPU
implementation that make it possible to achieve sig-
nificant speedups. This, we believe, would serve as a
tutorial for other data mining researchers interested in
implementing their algorithms on a GPU.

The rest of this paper is organized as follows. Section
II discusses the details of the serial version of the pattern
based time series classification approach as presented in
[2] and [3]. We discuss the details of GPU devices in

Algorithm 1 Shapelet Discovery Algorithm in [2]
ShapeletDiscovery(D):

1) Compute the initial entropy E(D).
2) For all pivots Ti,s,l, i ∈ [1, N], l ∈ [1, L], s ∈ [1, L− l].

a) Compute dist(Ti,s,l,Tj),∀j ∈ [1, N].
b) Sort D by the distances s.t. TL(j),∀j are in order.
c) For j = 1 . . . L− 1, sequentially visit TL(j)

i) Compute information gain I(Ti,s,l, θj) by (3),
where θj is defined in (4).

ii) (Ti∗,s∗,l∗,θ
∗)←argmax(I(Ti,s,l,θj), I(Ti∗,s∗,l∗,θ

∗)).
3) Return (Ti∗,s∗,l∗ , θ

∗).

Section III. Sections IV and V present the details of our
parallel implementation of the shapelet discovery algorithm
suitable for execution on GPUs. Our experimental results are
presented in Section VI. Finally, Section VII concludes the
work. Our code is available at http://cogcomp.cs.illinois.edu.

II. PATTERN-BASED TIME SERIES CLASSIFICATION

Various classification techniques have been applied for
time series classification (e.g., [10], [11], [12]). Recently,
[2], [3] proposed a shapelet based classification approach
based on a decision tree-like algorithm [13] and showed
that the algorithm is able to identify the informative patterns
of time series that are predictive of a class label. They
argue that for many situations, building such an interpretable
model is more important. In this section we describe the
shapelet discovery algorithm for time series data and analyze
its complexity. Readers may refer to [2] for illustrative
examples of how this approach is useful for several real
world applications.

Given a data set D = {Ti, yi}Ni=1, where Ti =
〈Ti,1, . . . , Ti,L〉 is a real-valued sequence of length L, and
yi ∈ {1, . . . , C} is a multi-class label, the objective of
the shapelet discovery algorithm is to find a contiguous
subsequence belonging to one of the time series and a
distance threshold that can be used to classify the data set.
For simplicity, we assume all the time series in a data set
have same lengths. One can easily extend the model to deal
with time series in various lengths. The shapelet discovery
algorithm first generates all candidate subsequences

Ti,s,l = 〈Ti,s, . . . , Ti,s+l〉,∀i ∈ [1, N], l ∈ [1, L], s ∈ [1, L−l].

For each of these subsequences (called pivots), it computes
the distance to each of the time series based on the following
definition.

Definition 1
Distance from a time series Tj to a pivot Ti,s,l is defined
as the minimum of the distance between Ti,s,l and any
subsequence Tj,u,l, u = [1, L − l] derived from Tj whose
length is equal to that of Ti,s,l. That is,

dist(Ti,s,l,Tj) = minu∈[1,L−l] dist(Ti,s,l,Tj,u,l). (1)

Different measures of distance (example Euclidean dis-
tance) between Ti,s,l and Tj,u,l can be used for the shapelet
discovery algorithm. In this paper, we follow [3] to use the
normalized Euclidean distance1:

dist(Ti,s,l,Tj,u,l)=

√√√√1
l

l−1∑
t=0

(
Ti,s+t−µi,s,l

σi,s,l
− Tj,u+t−µj,u,l

σj,u,l

)2

,

(2)
where Ti,s+t is the (s+t)th element of Ti and µi,s,l and σi,s,l

are the mean and standard deviation of Ti,s,l, respectively.
Once the distances are found, the pivot splits the data set D
into two groups DL and DR with a threshold θ, such that

dist(Ti,s,l,Tj) ≤ θ, ∀Tj ∈ DL,

dist(Ti,s,l,Tj) > θ, ∀Tj ∈ DR.

The algorithm seeks the best pivot Ti∗,s∗,l∗ and the best
threshold θ∗ to maximize the quality of the split. The quality
of the split is measured by the information gain:

I(Ti,s,l, θ) = E(D)− |DL|
|D|

E(DL)− |DR|
|D|

E(DR), (3)

where E(·) is an entropy function defined by

E(D̄)=−
C∑

c=1

|{Tj ∈D̄ | yj =c}|
|D̄|

log
(
|{Tj ∈D̄ | yj =c}|

|D̄|

)
.

Ye and Keogh [2] develop an algorithm to find the best θ
given a pivot Ti,s,l using an order-line. First, the time series
are sorted according to the distances, so TL(j),∀j is in order,
where L(·) is an index function. Although θ can be any real
number, there are at most L − 1 possible combinations to
split D into DL and DR based on the distances. Therefore,
TL(1), TL(2),. . ., TL(L−1) are sequentially visited and for
each TL(j), I(Ti,s,l, θj) is computed with

θj =
dist

(
Ti,s,l,TL(j)

)
+ dist

(
Ti,s,l,TL(j+1)

)
2

, (4)

and
θ∗ = θj∗ , j

∗ = arg maxj I(Ti,s,l, θj)

is calculated. Finally, a shapelet is the pivot corresponding
to the highest information gain with the best split. To break
a tie, if two pivots have the same information gain, the
one with the larger separation gap is favored, where the
separation gap is defined as

1
|DR||

∑
Tj∈DR

dist(Tj ,Ti,s,l)−
1
|DL|

∑
Tj∈DL

dist(Tj ,Ti,s,l).

Algorithm 1 summarizes the shapelet discovery algorithm.
To analyze the time complexity of algorithm 1 we note

that computing the distance from a pivot to a time series by

1In order to remove offset and difference in scale, Mueen et al. [3] first
normalized the time series to zero mean and unit variance. Then, they
computed a length-normalized distance.

Algorithm 2 Building Decision Tree
BinaryDecisionTree(D, nodeD):

1) If D satisfies the stopping condition: return.
2) (T ∗, θ)← ShapeletDiscovery(D).
3) Assign (T ∗, θ) to nodeD.
4) DL ← {Tj ∈ D | dist(Tj ,T

∗) ≤ θ}.
5) DR ← {Tj ∈ D | dist(Tj ,T

∗) > θ}.
6) BinaryDecisionTree(DL, left child of the nodeD).
7) BinaryDecisionTree(DR, right child of the nodeD).

Eq. (1) is O(L2) as evaluating Eq. (2) is O(L). There are
total N time series. Therefore Step 2a in Algorithm 1 takes
O(NL2). To sort the time series based on the distances (Step
2b) requires O(NlogN). By tracing |{Tj ∈ DL|yj = c}|
and |{Tj ∈ DR|yj = c}|, the information gain can be
computed in constant time, and the inner loop (Step 2c)
costs only O(N). Therefore, the computational complexity
of each pivot is O(NL2), and the overall complexity is
O(N2L4) as there are O(NL2) pivots.

Using the shapelet discovery algorithm, a binary decision
tree can be built by a recursive process. Algorithm 2 lists
the procedure. The program starts with a root node and
the entire training set. For each node, it finds a shapelet
and a corresponding threshold using the shapelet discovery
algorithm. The shapelet and the threshold are assigned to the
current node as a decision rule, and are applied to separate
the data set into two subsets. Then the process recursively
generates the left and right children of the node over the two
subsets. The procedure stops when a stopping condition is
satisfied.
An Improved Algorithm from [3]. The bottleneck of
Algorithm 1 is the distance calculation. Mueen et al. [3]
proposed an algorithm to reduce the distance calculation of
each pivot from O(NL2) to O(NL). They rewrite Eq. (2)
as

dist(Ti,s,l,Tj,u,l) =

√
2
(

1− Ωi,j,l,s,u − lµi,s,lµj,u,l

lσi,s,lσj,u,l

)
,

where

Ωi,j,l,s,u = Ti,s,l · Tj,u,l =
l−1∑
t=0

Ti,s+tTj,u+t. (5)

In [3], they proposed pre-computing some statistics of the
data, such that µi,s,l, µj,u,l, σi,s,l, σj,u,l, and Ωi,j,l,s,u can be
evaluated in constant time, and the distance calculation can
be speeded up. The pre-computation requires O(NL2) space
to store temporary information if the pivots are examined
sequentially. However, if the pivots are examined simul-
taneously, it requires O(N2L2) space in total. In Section
V-B, we illustrate why the algorithm proposed in [3] is not
suitable for our GPU implementation. We also propose an
alternative dynamic programming algorithm to reduce the

Figure 1: An illustration of the GPU programming model
[14].

computational complexity of the distance calculation. Mueen
et al. [3] also proposed a pruning technique by computing
an upper-bound of the information gain of a pivot. We show
in Sections VI-A and VI-C that the pruning technique is not
useful in our implementation.
Logical Shapelets. In a decision tree model, the tree
structure implies logical operations. The decisions made
sequentially in a path from the root to a leaf are combined
with an AND operation, while different decision paths that
generate the same output label at leaves imply an OR
operation. Mueen et al. [3] proposed an alternative way
that makes use of logical shapelets to directly inject logic
operations into the decision tree. The logical shapelet is
defined recursively by

LogicShapelet :=LogicShapelet ∧ LogicShapelet,
LogicShapelet :=LogicShapelet ∨ LogicShapelet,
LogicShapelet :=Shapelet,

where ∧ and ∨ represent AND and OR logic operators, re-
spectively. To discover logical shapelets, they further define
the following distance functions

dist(Tj ,Ts1 ∧ Ts2) = max(dist(Tj ,Ts1), dist(Tj ,Ts2)),
dist(Tj ,Ts1 ∨ Ts2) = min(dist(Tj ,Ts1), dist(Tj ,Ts2)),

where Ts1 ,Ts2 are two logical shapelets, and Tj is a time
series. Then, logical shapelets can be found by using a
modified shapelet discovery algorithm. They show that for
some data sets, logical shapelets outperform shapelets in
terms of accuracy.

III. GRAPHICS PROCESSORS

In this section we briefly discuss the details of the GPU
architecture that are relevant to understanding the different
considerations in our parallel shapelet algorithm discussed
in Sections IV and V. In this work we use a NVIDIA
GeForce GTX 480 GPU and we use the Compute Unified
Device Architecture (CUDA) tools for programming. It
should however be noted that the design considerations

Memory Read/Write Speed Size Scope
register ∼1 cycle 32kB (per SM) thread
shared ∼5 cycles 48kB (per SM) block
global ∼500 cycles 1.5GB grid

constant ∼5 cycles (w/caching) 64kB grid

Table I: The access speed, size and the scope of different
memories found on the GTX 480 GPU.

discussed in this work are also relevant for other graphics
processors.

A. CUDA Programming Model

Figure 1 shows the thread architecture in the CUDA
programming model. In the CUDA programming model
the host (CPU) code launches kernels for execution on the
GPU. These kernels consist of several threads organized
into one-dimensional, two-dimensional or three-dimensional
thread blocks. Each thread block is a batch of threads that
synchronize and cooperate with each other through shared
resources and are guaranteed to run simultaneously. The
number of threads in a thread block is specified by the
programmer, and is up to 1024 in GTX 480. As several
thread blocks execute in parallel, the number of threads
simultaneously running in the GPU can be very large. At
a higher level, thread blocks are also organized into grids.
Each grid contains many thread blocks that conceptually
execute in parallel, while different grids run sequentially on
the GPU.

GPUs contain several types of memories for different
proposes. Understanding the details of them is essential for
extracting good performance from any GPU implementation.
Table I lists the access speed, size and the scope of different
memories found on the GTX 480 GPU. All threads have
access to a large global memory with long access latency.
Each block can access its own shared memory which is
smaller but has lower access latency and can be used to share
data between the threads in the same block. Each thread has
registers which are fast, but each thread can only access its
own registers. There is also constant memory allowing pro-
grammers to store read-only values. With caching, accessing
to constant memory is fast.

It should be noted that the latency of memory access
can severely limit the throughput of a GPU implementa-
tion. Therefore, a careful choice of memory type when
implementing an algorithm can significantly improve the
performance. For example, we discuss in Section V-A how
global memory accesses can be reduced by using shared
memory and demonstrate the performance improvement for
our implementation in Section VI-B.

B. GPU Hardware Details

The above CUDA programming model provides an ab-
stract view of programming on massively parallel GPU
devices. Programming under the abstract model allows the

Figure 2: An illustration of a GPU device.

code to be executed on other GPU devices with the same
compute compatibility. However, to fully utilize the device,
we need to have a better understanding about the GPU
hardware.

Figure 2 shows a schematic of a typical NVIDIA GPU.
The GPU consists of several Multiprocessors (MPs) with
each multiprocessor containing several Stream Processors
(SPs). For example, GTX 480 has 15 SMs, each with an
instruction unit, 8 SPs and its own physical shared memory,
cache and register file. At most 8 blocks can be assigned to
each SM if the device resources are sufficient. The actual
number of blocks assigned to each SM, called occupancy,
depends on the number of threads and the amount of
registers and shared memory used by each thread.2 Once
a block is assigned to a SM, the threads in the block are
further divided into 32-thread units called warps. A warp
is a basic unit in the GPU thread scheduling and all the
32 threads in the same warp execute the same instruction
on SPs. This style of parallel execution is called Single
Instruction Multiple Data (SIMD) and it reduces the effort
for fetching and decoding instructions. The warps residing
in an SM time-share the computational resources of the SM.
Although each SM only executes one warp at a time, time-
sharing with other warps residing in the same SM help to
amortize the delay of long latency operations. For example,
when a warp needs to wait for accessing data from memory,
the warp will be put into a waiting phase. Then, one of the
other warps will be scheduled for execution.

IV. A NAIVE GPU IMPLEMENTATION

In the following two sections, we describe our GPU im-
plementation of the shapelet discovery algorithm. We begin
by introducing a baseline implementation that implements a
brute-force algorithm. Then, in Section V we will discuss
how this algorithm can be improved by taking into account
various details of execution on GPUs.

2The occupancy can be computed using the spreadsheet at NVIDIA’s
website.

Figure 3: An illustration of how we distribute the workload
among threads and blocks. The shapelet discovery algorithm
requires to compute the distances of each pivot Ti,s,l to
all N time series and to calculate the information gain
associated with the pivot (see Algorithm 1 for details). In
our implementation, each thread handles the computation
corresponding to one pivot. Thread blocks consist of threads
that deal with pivots of the same length and belonging to
the same time series.

The shapelet discovery algorithm described in II can
be summarized as follows. For each time series (of the
given N time series of length L), all possible contiguous
subsequences (called pivots) of length 1 to L (or from
some parameters minLength to maxLength in practice) are
generated. Now for each of these pivots, the distances of
this pivot to all the N time series are computed and the
time series are sorted according to these distances. Finally,
these N time series are partitioned so that the corresponding
information gain is maximized. Thus each pivot can be
associated with a resulting information gain. The pivot with
the highest associated information gain is chosen as the
shapelet.

An illustration of how we parallelize the computation for
GPUs can be found in Figure 3. For efficient implementation
of this parallel computation on GPUs we need to address the
following questions:

1) How do we distribute the work among individual
threads? There is a tradeoff in the amount of work assigned
to each thread. Increasing the work assigned to each thread
results in increased hardware resources (registers for exam-
ple) needed by each thread. Since the hardware resources on
a SM are limited, this limits the number of threads that can
be assigned to an SM. This limits the total number of threads
that can be scheduled on the GPU at any time, thus reducing
the parallelism of the implementation. On the other hand,
decreasing the work assigned to each thread increases the
number of threads and results in higher overhead of creating
threads and thread blocks. Also, small amount of work in
each thread limits the possible cooperation between threads
in a thread block. In our implementation, we assign the work
associated with each pivot to a thread. This includes calcu-

lating distances to all N time series, sorting and information
gain calculation. In our naive implementation, we implement
the O(NL2) brute-force algorithm to compute distances,
and use a non-recursive3 quick sort algorithm. Therefore,
the computing complexity of each thread is O(NL2). The
overall complexity is O(N2L4) as there are O(NL2) threads
in total.

2) How do we group these threads into thread blocks?
As mentioned in Section III threads are grouped into thread
blocks. 32 threads from the same block constitute a warp
and all threads from the same warp are executed together
under a SIMD model. Thus it is important to group threads
with similar amount of work into a block. Otherwise, a
thread with a long running time will result in high wait
penalty for other threads. Also, since multiple threads (in
a warp) execute the same instruction in lockstep, it can
lead to inefficiencies when different threads take different
control paths at a branch. This is called control divergence
and is generally resolved by executing instructions from one
control path for a subset of the threads and then re-executing
along the other control path for the remaining threads. This
can severely limit the throughput of an SM and hence similar
threads need to be grouped into a block to reduce the chances
of control divergence. Also, similarity of the work done in
the threads also increases the chances of cooperation within
the threads in the thread block. In our implementation, all
thread blocks consist of threads corresponding to pivots that
are of the same length and are derived from the same time
series.

Note that in the baseline implementation, the threads do
not cooperate with each other. Therefore, threads waste
device resources and computation time in redundant work. In
the next section, we exploit redundancy in memory accesses
(Section V-A) and computations (Section V-B) to improve
our implementation.
Implementing Logical Shapelet Discovery Algorithm on
GPUs. Here we briefly describe how to implement the
logical shapelet discovery algorithm on GPUs. Given the
current best logical shapelet TL∗ and a logical operation ⊕ ∈
{∧,∨}, we can pre-compute dL∗,j = dist(TL∗ ,Tj),∀j ∈
[1, N] and store the distances in constant memory. Then, we
can replace the distance calculation in Step 2a of Algorithm
1 as
2.a.1 Compute di,s,l,j ← dist(Ti,s,l,Tj),∀j.
2.a.2 if ⊕ = ∧, dist(Ti,s,l∧TL∗ ,Tj) = max(di,s,l,j , dL∗,j).
2.a.3 if ⊕ = ∨, dist(Ti,s,l∨TL∗ ,Tj) = min(di,s,l,j , dL∗,j).
In the following sections we present results for only the
original shapelet discovery algorithm. However, as shown
above it can easily be extended to the logical shapelet
algorithm.

3In current CUDA C++, it is not allowed to implement recursive function
in the device.

V. PERFORMANCE CONSIDERATIONS AND
IMPLEMENTATION DETAILS

In this section, we describe various factors that affect
the performance of the parallel implementation on GPUs.
In Section VI-B, we show that significant speedups can be
achieved by carefully considering these factors.

We first discuss memory access issues which are usu-
ally the most common concerns for GPU implementations.
Second, we discuss why the original distance computation
algorithm is not a good candidate for GPU implementation.
We present a more efficient dynamic programming algorithm
that reduces the computational complexity of the distance
computation from O(NL2) to O(NL). Third, we discuss
how insufficient hardware resources might limit us from
using the full computation capabilities of the GPU and limit
the size of problems we can handle. We present a technique
that allows us to overcome this limitation for our GPU
implementation.

A. Memory Considerations

We discuss two aspects of memory accesses in this
section. First, the design of GPUs is specialized for high
throughput rather than low latency and so, global memory
access are often not able to sustain the GPU’s computing
throughput. Time spent on global memory accesses often
becomes the bottleneck in GPU implementations. Second,
because of the hardware design of GPUs, an inefficient mem-
ory access pattern may sequentialize memory accesses made
by the parallel threads in a warp resulting in significantly
higher execution times. Thus, it is crucial to avoid both these
situations to achieve good performance.
Amortizing Global Memory Access via Shared Memory.
In our baseline implementation, each thread loads the time
series from global memory independently. Therefore, to load
the values of a time series, each thread requires O(L) global
memory access. As mentioned in Section III, data accesses
from global memory cost about 500 GPU cycles. Even with
caching, the global memory access still slows down the
program execution (see experiments in Section VI-B).

To amortize the global memory accesses, a common
technique called tiling fetches the data and stores it in shared
memory. Algorithm 3 lists the procedure for our application.
To load a time series, each thread is responsible to load
an element from global memory to shared memory.4 Then,
the threads are synchronized using a barrier synchronization
function syncthreads(). This reduces the number of global
memory accesses in each thread to O(1). Notice that we
simplify the algorithm by assuming the number of threads
is equal to the length of the time series. If the number of
elements in a time series is too large, we can divide the time
series into tiles. Then, all threads in a block collaborate to

4Note that thread ID and array index start at 0 while the indices of
elements in each time series start at 1.

Algorithm 3 A GPU implementation using shared memory.
1) Thread s loads Ti,s+1 to shared memory Ti[s].
2) syncthreads().
3) Perform calculation using array Ti.
4) For all time series Tj , j = 1 . . . L

a) Thread s loads Tj,s+1 to shared memory Tj[s].
b) syncthreads().
c) Perform calculation using array Tj.

load a tile of the time series at a time. In some applications,
if threads have only a small number of instructions between
memory accesses, tiling might not be sufficient to amortize
the global memory access. In such situations, one might
consider applying pre-fetching technique. An example can
be found in [15].
Global Memory Coalescing. As mentioned in Section III,
all threads in a warp execute the same instruction at the
same time. Therefore, by design, if threads in a warp execute
a load instruction to access data in aligned, consecutive
global memory locations, the hardware can gather all these
accesses to a consolidated access to the DRAMs and reduce
the access overhead. Consider the case when a thread block
loads a time series from global memory to shared memory.
Assume that the values of time series are stored as double
precision floating point numbers (8 Bytes), and starting
memory address of the time series is M. If M is a multiple of
128 Bytes, and thread i accesses memory location M+i×8,
all the accesses will be coalesced. Such access pattern allows
the DRAMs to deliver data at a high rate, and reduces
the time to access memory. In our application, all elements
of time series are stored in consecutive locations and they
are accessed by consecutive threads. Therefore, the global
memory accesses are coalesced.
Bank Conflicts. In many GPU devices, shared memory is
divided into memory banks and threads can access only one
address from each bank at a time. Therefore, if threads in
a warp try to access memory in the same bank, it results in
a bank conflict and the accesses are executed sequentially.
In general, bank conflicts can be avoided by careful data
layout in shared memory (padding extra bytes is a common
strategy).

B. An Efficient Algorithm for Distance Computation

As mentioned in Section II, Mueen et al. [3] proposed an
algorithm to reduce the total computational time of distance
computation from O(N2L4) to O(N2L3) by pre-computing
and storing temporary information. However, the algorithm
requires O(N2L) space to store the pre-computed informa-
tion if the pivots are evaluated simultaneously. A typical
problem that we consider has a value of around 1,000 for N
and L. The size of memory required to store the temporary
information in this case is beyond the memory capacity of
typical GPUs. Moreover, data access from global memory is

slow. Therefore, pre-computing and storing statistics of time
series in global memory is not desirable. In the following,
we propose a dynamic programming algorithm to reduce the
computational complexity of each thread from O(NL2) to
O(NL) by using shared memory. Then, the overall compu-
tational complexity becomes O(N2L3) as there are O(NL2)
threads in total. The complexity of our GPU implementation
is thus the same as that of the algorithm in [3].

We follow [3] to compute dist(Ti,s,l,Tj,u,l) via Eq. (II).
If we directly evaluate Ωi,j,l,s,u, the time complexity of Eq.
(5) is O(L). However, Eq. (5) has the following recursive
relationship:

Ωi,j,l,s+1,u+1 =
l−1∑
t=0

Ti,s+t+1Tj,u+t+1

=
l∑

t=1

Ti,s+tTj,u+t

= Ωi,j,l,s,u + Ti,s+lTj,u+l − Ti,sTj,u.

(6)

Therefore, computing Ωi,j,l,s+1,u+1 from Ωi,j,l,s,u can be
done in constant time. For a fixed i, j, l, the recursion
requires the initial values Ωi,j,l,1,u,∀u and Ωi,j,l,s,1,∀s.
They can be pre-computed parallelly by Eq. (5) using all
the available threads. A similar relationship can be found to
compute µj,u,l and σj,u,l:

µj,u,l = Sj,u,l/l, σj,u,l =
√
S2j,u,l − µ2

j,u,l,

Sj,u,l =
l−1∑
t=0

Tj,u+t = Sj,u−1,l + Tj,u+l−1−Tj,u−1,

S2j,u,l =
l−1∑
t=0

T 2
j,u+t = S2j,u−1,l + T 2

j,u+l−1−T 2
j,u−1.

(7)

Algorithm 4 lists the details. For simplicity, we omit
the syncthreads() operation in the presentation. In our
algorithm design, thread s in the thread block (i, l) deals
with the pivot Ti,s+1,l. At the outer loop j (Step 2), Thread
s computes the initial value Ωi,j,l,s+1,1 and Ωi,j,l,1,u+1

using (5) and stores the result in shared memory buf[s]
and buf s0[s], respectively. Then, in iterations of u (Step
2e), Thread 0 loads Ωi,j,l,1,u from buf s0[u], while Thread
s, s > 0 fetches Ωi,j,l,s,u−1 from the buffer, and computes
Ωi,j,l,s+1,u by Eq. (6). The time complexity of all the
operations in the inner loop (Step 2e) is O(1), therefore,
the total complexity is O(NL). Section VI-B presents the
speedup seen in distance computation by using this efficient
algorithm.

C. Memory Shortage Problem When Dealing with Large
Data Sets

In our implementation, each thread computes the informa-
tion gain corresponding to a pivot. This computation requires
sorting the time series according to their distances from
the pivot. Therefore, each thread needs to compute and to
store the distances in an array. As each block has O(L)

Algorithm 4 An efficient algorithm for computing
dist(Ti,s+1,l,Tj),∀j by Thread s on Block (i, l).

1) Compute Si,s+1,l, S2i,s+1,l of Ti.
2) For all time series Tj , j = 1 . . . N

a) Compute Sj,1,l, S2j,1,l of Tj .
b) Compute Ωi,j,l,s+1,1 and store the result in buf[s].
c) Compute Ωi,j,l,1,s+1 and store the result in

buf s0[s].
d) Compute dist(Ti,s+1,l,Tj,1,l) by Si,s+1,l, S2i,s+1,l,
Sj,1,l, S2j,1,l, Ωi,j,l,1,s+1.

e) For every starting position u = 2 . . . L on Tj

i) Compute Sj,u,l using Sj,u−1,l by (7).
ii) Compute S2j,u,l using S2j,u−1,l by (7).
iii) If s = 0: load Ωi,j,l,1,u using buf s0[u],
iv) Else: compute Ωi,j,l,u,s+1 using buf[s-1] by (6)

and store result in buf[s].
v) Compute dist(Ti,s+1,l,Tj,u,l) by Si,s+1,l,

S2i,s+1,l, Sj,u,l, S2j,u,l, Ωi,j,l,u,s+1.
f) dist(Ti,s+1,l,Tj)← minu dist(Ti,s+1,l,Tj,u,l).

threads, to store all the distances takes O(NL) memory. This
exceeds the capacity of shared memory on GPUs for many
problems of interest. Therefore, we store these distance in
global memory. But, if we assume all thread blocks execute
at the same time, the global memory is also not sufficient
as there are O(NL) thread blocks and O(N2L2) space
in total will be required. To avoid this memory shortage
problem, one possible solution is to split the thread blocks
into several grids and to execute grids in sequence. However,
this solution induces extra penalty as the end time of a grid
is determined by the end time of the last thread block,
and a grid can execute only if the previous grids finish
execution. In the rest of this section, we describe a solution
that launches the kernel only once.

Although the CUDA programming model assumes that
all thread blocks execute in parallel, the number of current
thread blocks that actually execute is limited by hardware
resources. For example, in GTX 480, there are only 15 SMs,
and up to 8 thread blocks can be assigned to each SM.
Therefore, there are at most 90 thread blocks active in the
SMs and they are executed simultaneously. Inspired by the
fact, we assume that there are at most |B| thread blocks
active in SMs at a time. Then, we equally divide the original
thread blocks to |B| groups, such that each group contains
O(NL/|B|) blocks. Then, we only need to generate |B|
thread blocks, and each of them sequentially executes one
group of the original blocks. Since each thread block can
release the distance values after it completes execution, the
total memory usage is reduced to |B|NL. The parameter |B|
is specified by user according to the resource usages and the
device parameters. In our experiments, the performance is
insensitive to the choice of |B| to a reasonable extent.

Data N C L CPU GPU
from [3] ours BL +SM +All

Cricket 9 2 308 44.7 11.4 2.7 1.1 0.4
*BirdSong 10 2 995 40.7 11.5 0.0 0.0 0.0
Diatom 16 4 345 201.2 52.2 16.2 7.0 1.6
Motes 20 2 84 3.5 1.0 0.1 0.1 0.0
Sony 20 2 70 1.9 0.5 0.1 0.0 0.0
ECGFiveD 23 2 136 22.5 5.9 1.0 0.5 0.2
FaceFour 24 4 350 474.2 125.0 38.0 16.4 3.8
Symbols 25 6 398 768.5 202.2 64.0 34.7 8.3
Coffee 28 2 286 346.0 90.6 19.6 11.1 3.0
OliveOil 30 4 570 3,308.9 867.6 308.8 168.5 31.2
CBF 30 3 128 100.3 24.1 3.3 1.8 0.4
Arrowhead 36 3 100 1,444.5 391.5 62.7 48.6 17.9
Beef 30 5 470 1,836.9 471.7 160.8 85.9 18.1
Gun Point 50 2 150 145.4 38.6 6.0 3.5 1.2
Car 60 4 577 13,769.2 3,622.0 1,392.5 702.7 127.7
*Lighting2 60 2 637 1,870.8 490.7 188.2 99.6 17.0
ItalyPower Demand 67 2 24 0.4 0.1 0.0 0.0 0.0
Haptics 69 2 364 4,418.3 1,179.4 333.6 187.4 48.8
Trace 100 4 275 3,920.6 1,060.2 226.8 123.3 34.2
ECG200 100 2 96 209.7 62.9 7.5 3.2 1.6
Plane 105 7 144 566.1 152.9 24.1 13.4 4.9
*OSULeaf 200 6 427 6,366.2 1,711.0 526.1 282.7 65.9
*Chlorine 467 3 166 1,970.1 553.7 87.6 49.5 17.2
*Wafer 1,000 2 152 6,791.7 1,900.5 262.9 150.6 54.6
*TwoPatterns 1,000 4 128 4,028.2 1,160.9 136.7 89.8 33.1

Table II: Data statistics (N is number of time series, C is
number of classes and L is the length of the time series) and
running time of distance calculation. Time is in seconds.
Running time for CPUs is provided both for the original
implementation and our optimized version. The running time
of the GPU implementation is provided for the baseline, the
baseline with shared memory usage and the baseline with
shared memory usage and a more efficient algorithm. For
some data sets, CPU implementations are not fast enough
to consider all possible pivots. Therefore, [3] restricts the
search space to the pivots with length that are multiples of
10. We follow the setting in [3] and mark such data sets with
an asterisk symbol (*). More discussion about the search
space can be found in Section VI-C.

VI. EXPERIMENTS

In this section we present the results of our experiments
to analyze the performance of our GPU implementation.
We first compare the performance of the CPU and GPU
implementations of distance calculation and show the im-
provements in the GPU implementation by considering the
various factors described in Section V. We then present the
overall speedup of shapelet discovery algorithm and show
that we achieve orders of magnitude speedup over the CPU
implementation.

A. Experimental Settings

We implemented algorithms based on the source code
from [3].5 The experiments are conducted on a 64-bit
Linux machine with Intel Xeon X5650 CPU @ 2.67GHz

5Supporting materials of [3] including code and data is at http://www.
cs.ucr.edu/∼mueen/LogicalShapelet/

and NVDIA GTX480 graphics card. The CPU code is
implemented in C/C++ and the GPU code is implemented
in CUDA C/C++. All implementations use double precision
floating point.

We generate results for all data sets used in [3] with the
same parameters reported in their supplementary materials.
The datasets are available at [16]. Table II lists the statistics
(number of time series, their lengths and the number of
classes) of the time series data sets we used.6 To check the
correctness of our implementation, we checked the distance
between each pivot and each time series and confirmed
that in most cases, the results of our GPU implementation
are consistent with that of CPU implementation. We use a
similar method to check the information gain corresponding
to each pivot computed on the GPU. In almost all the cases,
the GPU implementation discovers the same shapelets as the
CPU implementation, although in some rare situations they
find different shapelets because of numerical inaccuracy.

We also noticed that the CPU implementation from [3]
is not optimized. It calls functions to compute means and
standard deviations of time series and pivots in an inner loop.
Because this calculation is done in constant time by using
the pre-computing technique, the overhead of the function
calls become a bottleneck for the program. By replacing the
function call with in-line calculations, the running time is
significantly reduced. Table II shows the results for both the
original CPU implementation from [3] and our optimized
CPU implementation. We confirm that, in our machine, the
running time of the CPU implementation from [3] is similar
to or less than that reported in [3]7.

B. Speedup of the Distance Computation

In this section, we investigate the time to do the distance
computation. We compare the following implementations:
• The CPU implementation from [3].
• An optimized CPU implementation (see Section VI-A).
• GPU (BL): the baseline implementation (described in

Section IV).
• GPU (+SM): the GPU implementation using shared

memory (described in Section V-A).
• GPU (+All): the GPU implementation using shared

memory and a dynamic programming algorithm (de-
scribed in Section V-B).

Table II shows the running time of distance calculation for
the shapelet discovery algorithm. For GPU implementations,
the running time includes the time to transfer data between
host memory and device memory and the time to launch

6The time series objects in BirdSong and Arrowhead data sets have
different lengths. To simplify, we pad the short time series with zeros such
that all the time series are of the same length.

7The only exception is Car data set. The implementation from [3] takes
17,024 seconds (see Figure 4). However, the overall running time reported
in [3] is 1,940 seconds. Based on the size of the data, we suspect there
is an error in reporting the parameters. Nevertheless, we use the provided
parameters in our comparisons.

Figure 4: Comparison of total running time of various CPU and GPU implementations. Time is in log scale. Results show
that the GPU implementation is faster than CPU implementations by 1-2 orders of magnitude.

the kernel. We find that our optimized CPU implementation
(with function call overheads removed) is about four times
faster than the original implementation from [3]. Although
the naive baseline implementation on GPUs has a high
computational complexity, we find that it significantly out-
performs the optimized CPU implementation. This shows
the benefits of the GPU’s massively parallel computing
power. Using shared memory to amortize global memory
access improves the performance of the GPU baseline im-
plementation by about two times on average. This shows the
importance of carefully considering memory usage factors in
a GPU implementation. Applying the dynamic programming
algorithm described in Section V-B, GPU (+All) further
improves the performance of the GPU implementation by
3.75x on an average. The average speedup of GPU (+All)
over the CPU implementation from [3] is 118x and over the
optimized CPU implementation is 32x. The best speedup of
GPU (+All) over the CPU implementation from [3] is 271x
and over the optimized CPU implementation is 65x. These
results are consistent with the results seen in implementing
other computational intensive algorithms on GPUs. Usually,
a well-designed GPU implementation is found to be faster
than a CPU implementation by 1 or 2 orders of magnitude.

C. Overall Speedups

We compare the overall running time of the shapelet
discovery algorithm for the following implementations:
• The CPU implementation from [3].
• The optimized CPU implementation (see Section VI-A)

without pruning technique.
• The optimized CPU implementation with pruning tech-

nique (discussed below).
• The proposed GPU implementation.

Mueen et al. [3] proposed a pruning technique, in which they
find an upper bound on the information gain corresponding
to a pivot even before all the distance calculations for the
pivot are completed. If the upper bound is less than the
current best information gain, the pivot is discarded. The
running time is significantly reduced if the time to calculate

the upper bounds is much lesser than the time to calculate
distances. However, as we speedup the distance calculation
on the CPU, it is not clear whether pruning is still useful.
Therefore, we report the results of our CPU implementation
both with and without pruning. We do not compare with the
implementation from [2], as [3] reports that their algorithm
is significantly faster than the former.

Figure 4 shows the overall running time of each imple-
mentation. For a fair comparison, we report the execution
time of the complete application including the time spent
on the CPU. Results show that our GPU implementation
is significantly faster than all the CPU implementations.
It achieves a maximum 460x speedup over the CPU im-
plementation from [3] and 149x speedup over the opti-
mized CPU implementation without pruning. On average,
the GPU implementation is faster than the optimized CPU
implementation by 35 times. Notice that the computational
complexities of the above implementations are the same.
The speedup of our GPU implementation comes from the
massive parallelism and from a careful design that fully
utilizes the resources on the GPU.

For most data sets, especially the larger ones, pruning
technique does not work well. This is because of the fact
that after the running time of distance calculation is reduced,
the overhead to compute the bound becomes significant.
For example, in ECG200 data set, it costs 274 seconds to
compute the bound for pruning. However, the total running
time of our optimized CPU implementation without pruning
is only 98 seconds. Therefore, we cannot take advantage of
pruning the search space.

The performance advantage of our GPU implementation
allows us to deal with larger data sets or to perform a
more extensive search for a shapelet. For example, on one
large data set, OSULeaf, the original CPU code requires
about 4.5 hours to search the shapelet from pivots with
length that are multiples of 10. The running time of our
optimized CPU implementation is reduced to 1.7 hours,
while our GPU implementation takes only 2 minutes. This
allows us to further consider all pivots with all possible

lengths and enlarge the search space by ten times. Our GPU
implementation takes only about 20.2 minutes to perform
this task. This allows us to look for a better shapelet than
previous implementations and thereby improve classification
accuracy from 69.01% to 72.31%. However, we note that
considering more pivots does not always guarantee better
performance. On Wafer, considering all possible pivots
obtains the same test accuracy (99.89%) as searching over
a subset of pivots with length that are multiples of 10.

VII. DISCUSSION AND CONCLUSION

In summary, in this work we presented a GPU im-
plementation of a shapelet discovery algorithm for time
series classification. We also discussed several hardware
and software perspectives that affect the performance ap-
plications implemented on GPUs and show the performance
improvements that can be achieved by carefully considering
these factors. From the hardware point of view, we show
the importance of using the appropriate kind of memory
from the several types of memories found in GPUs. From
the software aspect, we redesigned the shapelet discovery
algorithm to make it suitable for parallel implementation on
GPUs. Overall, our implementation is faster than the CPU
implementation from [3] by several orders of magnitude.

It should be noted that the proposed algorithms and
implementation considerations have potential to be applied
in other applications that use pattern based features. Pattern
based classification models generate features to indicate
the existence of a specific pattern in an object, and has
been attracting great interest because of their robustness and
interpretability ([17], [18], [19], [20]). However, the mining
time to discover a pattern usually grows with the number
of training objects and often restricts the search space for
these patterns. We believe that the computing power of the
massively parallel GPUs can be a key to solve this scalability
problem.

Acknowledgments. The authors would like to thank
Prof. Rakesh Kumar for his valuable feedback and the
authors of [3], [16] for sharing code and data. This re-
search is supported by the Defense Advanced Research
Projects Agency (DARPA) Machine Reading Program under
Air Force Research Laboratory (AFRL) prime contract no.
FA8750-09-C-0181. Any opinions, findings, and conclusion
or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the view of the
DARPA, AFRL, or the US government.

REFERENCES

[1] Z. Xing, J. Pei, and E. Keogh, “A brief survey on sequence
classification,” SIGKDD Explorations, vol. 12, pp. 40–48,
2010.

[2] L. Ye and E. Keogh, “Time Series Shapelets: A New Primitive
for Data Mining,” in KDD, 2009.

[3] A. Mueen, E. Keogh, and N. Young, “Logical-Shapelets: An
Expressive Primitive for Time Series Classification,” in KDD,
2011, pp. 1154–1162.

[4] W.-M. W. Hwu, Ed., GPU Computing Gems, Emerald &
Jade ed. Morgan Kaufmann, 2011.

[5] B. Catanzaro, N. Sundaram, and K. Keutzer, “Fast support
vector machine training and classification on graphics pro-
cessors,” in ICML. ACM Press, 2008, pp. 104–111.

[6] A. Cotter, N. Srebro, and J. Keshet, “A GPU-tailored ap-
proach for training kernelized SVMs,” in KDD, 2011.

[7] R. Raina, A. Madhavan, and A. Ng, “Large-scale deep
unsupervised learning using graphics processors,” in ICML.
ACM, 2009, pp. 873–880.

[8] F. Yan, N. Xu, and Y. A. Qi, “Parallel inference for latent
dirichlet allocation on graphics processing units,” in NIPS,
2009.

[9] D. Sart, A. Mueen, W. Najjar, V. Niennattrakul, and E. Keogh,
“Accelerating Dynamic Time Warping Subsequence Search
with GPUs and FPGAs,” in ICDM, 2010.

[10] E. J. Keogh and M. J. Pazzani, “Scaling up dynamic time
warping for datamining applications,” in KDD, 2000, pp. 285–
289.

[11] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and
E. Keogh, “Querying and mining of time series data:
experimental comparison of representations and distance
measures,” PVLDB, vol. 1, pp. 1542–1552, 2008. [Online].
Available: http://dx.doi.org/10.1145/1454159.1454226

[12] G. E. A. P. A. Batista, X. Wang, and E. J. Keogh, “A
complexity-invariant distance measure for time series,” in
SDM, 2011.

[13] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone,
Classification and Regression Trees, 1984.

[14] NVIDIA.

[15] G. Wang, X. Yang, Y. Zhang, T. Tang, and X. Fan, “Program
Optimization of Stencil Based Application on the GPU-
Accelerated System,” in ISPA, 2009, pp. 219–225.

[16] E. Keogh, Q. Zhu, B. Hu, H. Y., X. Xi, L. Wei, and
C. A. Ratanamahatana, “The UCR time series classifica-
tion/clustering,” http://www.cs.ucr.edu/∼eamonn/time series
data/.

[17] H. Cheng, X. Yan, J. Han, and C.-W. Hsu, “Discriminative
frequent pattern analysis for effective classification,” 2007.

[18] H. Cheng, X. Yan, J. Han, and P. S. Yu, “Direct discriminative
pattern mining for effective classification,” in ICDE, 2008.

[19] H. Saigo, N. Krämer, and K. Tsuda, “Partial least squares
regression for graph mining,” in KDD, 2008.

[20] D. Lo, H. Cheng, J. Han, S.-C. Khoo, and C. Sun, “Classifi-
cation of software behaviors for failure detection: A discrim-
inative pattern mining approach,” in KDD, 2009.

